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Namestnikov [i] was the first to experimentally determine the existence of a departure 
from the similarity laws of stress and strain deviators under creep conditions. This prob- 
lem was explored further in [2-7], while in [8] we discussed the significance of the simi- 
larity phase of the deviators in the theory of plasticity. Below, the arguments made in 
[8] are extended to creep theory. 

i. Novozhilov [9] proposed a formula to connect the two coaxial deviators aij' and 

bij': 

2 c  - f,( V ~ ,  ~), ,o : / . ~ (  V ~ ,  ~), o, = ~ - o, 

V g  % .: ... ,~ 
I a r c s i n -  

gl 2 : g l i f l i j  , ( l  3 = ( l i h a h j C l j i  ~ 

(i.i) 

Here, w is the similarity phase of the deviators aij' and bij', characterizing the extent 

to which the deviators depart from the similarity law. It was recommended in [i0] that (l.l) 
be modified as follows 

�9 [ a!  cos , I "~s = V J ~  , i n  ~ o < j  + c o s  ~ ' , 
Obij 

A somewhat different form was proposed in [ii] to represent two coaxial deviators: 

I ,] ~ j = w  V ~  ~ + t g ~  , 

w = V L V ~ o ,  ~, w = a)~(Vg, ~), o~ = (~ , (V~,  ~). 

The below representation was recommended in [12] 

E a ~ j = W  ( l - - t g 3 ~ ) t g m )  bij 
b 2 b 3 

Finally, Kadashevich et al. [8] proposed the relation 

�9 [ <~ ~ ] V j = m ~ ( V ~ , ~ ) , o ~ = m ~ ( V ~ , ~ ) ,  (1.2) 
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where 

~ = ~ L  ~ =" + ~ - ~  

Formula (1.2) can be rewritten in the more compact form 

Here, ~ij = 8 bC~/3bij' and ~ij = -~/~28~lSbij' are the normalized gradients of the invariants 

br and $, having the obvious properties: qijNij = i, ~ij~ij = i, DijDij = 0. If we require 
that 

t h e n  Eqs .  ( 1 . 2 )  w i l l  be o f  t h e  g r a d i e n t  t y p e .  I f  we assume t h a t  ~ (  br ~) = ~ ( r  
t h e n  t a n m  = ~ " ( ~ ) / 9 ( ~ ) .  I t  s h o u l d  be n o t e d  t h a t  i n  [11,  12] 

while in [8] 

Q = d~ Q = oi~ -- p~. 
i] 

Here eiji is the deviator of the inelastic strains; oij' is the deviator of the stress tensor; 

Pij is the deviator of the tensor of the microstresses. 

We can also use (1.2) to find more general relations that better correspond to the em- 
pirical creep data. In particular, 

i' i 1/2 dlx/dX = 1t! (k, X', V), d~, = (de,jdeii) , )~" = d~/dt. 

It is easily seen that, given such a representation, it is possible to obtain different 
variants of the theory of plasticity and creep. 

2. We take the following as the simplest theory variant accounting for the similarity 
phase of the deviators 

(~ij is the deviator of the tensor of the active stresses). Then we can write (1.2) in the 

form 

i, 
de~yd9 = O~ ( V ' ~  (~ (~)) Lij, dWd~ = 1/Q (E, E'), 

where  

o r  

O (~, ~ ) d~r = O, ( V ~  ~ (~)) L~. 

I t  f o l l o w s  f rom t h i s  t h a t  Q(X, X ' )  = r  o r  X" = F(CT:~:~(~), X). C o n s i d e r i n g  t h a t  

dciji/dX = (dciji/dt)(i/%'), we obtain dciji/dt = X'Lij or, finally, dgiji/d t = F(~r ' 

X ) L i j .  

In  [ l l ] ,  t h e  f u n c t i o n ~ ( ~ )  = 1 + k l  s i n  3~ + k 2 s i n 2 3 ~ .  In  [ 1 3 ] ,  an a p p r o x i m a t i o n  was 
p r o p o s e d  w i t h  t h e  u s e  o f  t h e  e x p o n e n t i a l  f u n c t i o n ~ ( ~ )  = exp ( k l  s i n 3 ~  + k l s i n 2 3 ~ ) ,  w h i l e  t h e  
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following relation was proposed in [8] 

/e-':p (k 1 (cos 61J - -  1)), ~ ~ O, 

(~) = [exp (k~ (cos {3~ - -  1)), ~ ~> O. 
(2.1) 

3. To demonstrate the possibilities of the theory, accounting for the coaxiality of 
the deviators, we will consider examples involving the deformation of materials uncer creep 

conditions. We set xij = ~ - kgiji, F(~(~), A) = B[~(~) + kl]nl m. Then we write 

the working formulas as 

d~jldt = 17 [ / ~  ~ (~) + kk] '~ k'~L~j, 

= - : _ 

Lij=c~176 ~J~2--sin~ ~, 

( 3 . 1 )  

, ] 

T 2 = T ~ j T i j  , T 3 = T } ~ T h j T j i  , d ~  ~ kae~;ae~j] , 

<~ ~ <~-v" = - - T a r c s i n  x3~e , 

The f u n c t i o n  ~ ( ~ )  h a s  t h e  fo rm ( 2 . 1 ) .  The p a r a m e t e r s  k ,  kz ,  ke ,  B, n ,  and m a r e  m a t e r i a l  
c o n s t a n t s .  The v a l u e s  o f  B, n ,  and m were  found  f rom t e s t s  c o n d u c t e d  in  u n i a x i a l  c r e e p  ( i t  

i s  a s sumed  t h a t  t h e  s t r a i n - h a r d e n i n g  law C = Ban~ m i s  v a l i d ) ,  w h i l e  k i and k~ were  d e t e r m i n e d  
in  [14] ( f o r  e x a m p l e )  by r e p l o t t i n g  e m p i r i c a l  d a t a  in  t h e  a x e s  t a n a  ~ $. The method o f  f i n d -  
i ng  k is explained below. Comparison of the theory with tests [5] conducted in complex load- 
ing for material Ti6AI4V were performed under the following conditions: creep was realized 

with o i = (3oij'oij'/2) I/2 = const and 8 = arctan(q~T/o) = const; then, at t,, the stress 

vector was rotated through the angle A8 while leaving o i = const. For this material, B = 
7"10 -2~ n = 6, m = -3, ~(~) = i. The parameter k was chosen so that the curve A(t) (A is 

t 

the work done during creep, A = o~jdsi~) coincided on the section A(t, + 0) with the experi- 
0 

mental curve. Thus, k = 1450 for the given material. 

Figure 1 shows graphs A ~ t, where 1 is the experimental curve from steady loading 
(o i = 637 MPa = const, 0 = 0 = const); 2 is the experimental curve from complex loading 

(o i = 637 MPa = const, 8(t, - 0) = 0, 8(t, + 0) = 90~ 3 is the calculation of complex 
loading based on the proposed theory (k = 1450 = const). Let us look at the example in [4]. 
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Here, with a change in 8 over the period of time t, (after steady loading at a i = 230 MPa, 
@ = 60~ o i decreases to such a value that the graph A(t) remains unchanged for a certain 
period of time (compared to steady loading). In the next example, e was changed again (after 
steady loading) and a new value of o i was chosen so that A(t, - 0) = A(t~. + 0). The surface 
obtained as a result in the stress space is shown by curve 2 in Fig. 2 (B = 7-10 -34 , n = 18, 
m = -2, ~(8) = i, k = 2000). It can be referred to as the equal-creep-rate surface [4, 5]. 
The circles show experimental data obtained by the above-described scheme in [4]. It is 
evident that the instantaneous creep surface changes form, and this agrees with the empirical 
data. At k = 0, the indicated surface remains circular (curve I). It was established from 
the tests in [4, 5] that at a i = const and varying 8, the deviators deiji/dt and aij' have a 

similarity phase. Over time, this phase approaches zero. In calculations performed in con- 
nection with the above-described tests conducted at k = const, a similarity phase was clearly 
detected but remained constant. 

Figure 3 shows results of calculations of the similarity phase m on the basis of the 
test method in [4] (o i = const, while A@ was varied). Here, m = = - $, where $ is the angle 
of the deviator oij' , ~ is the angle of the deviator dEiji/dt , k = k(~) = A I + A2~, A I = 

2000, A 2 = -i000, and ~ is the angle of the deviator ~ij" Figure 3 shows results of calcu- 

lation of ~ in accordance with the theory: line I corresponds to A@ = 30 ~ at k = const, line 
2 corresponds to A@ = 30 ~ at k = k(8), and the circles represent approximate empirical data 
from [5]. 

In addition, it is evident from Fig. i (curve 3) that the "tail" of the graph A(t) lies 
above empirical curve 2. To eliminate this "defect" in the theory, a suggestion has been 
made proposing the use of k(X) = Cexp(-KX) + D(< = 170, D = 250, C = 1.351"106). The re- 
suits of calculations performed by this invariant are shown in Fig. i by the dashed line. 
The proposition k(X, 6) = (C exp (-KX) + D)(I + A35) refines the behavior of the similarity 
phase. 

We also examined another form of relationship between the tensors Pij and Eiji: 

dpij/d% + apij = b (~) d~i/d~,. 

Then the working formulas (3.1) takes the form 
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de, dt = B [ + X L j, ( 3 . 2 )  
dpq/d t = b (~) ds~d t  - -  apij dZ/dt, d%/dt = B [ ]/r~ ~ (~) + ]/ '~]~ ~ .  

Here  P2 = P i j P i j ;  a = c o n s t ,  b ( ~ )  = B1 + B25. 

F i g u r e  4 shows t h e  r e s u l t s  o f  c a l c u l a t i o n s  p e r f o r m e d  w i t h  Eqs .  ( 3 . 2 )  f o r  o i = 637 MPa = 
c o n s t  [ c u r v e  1) 8 = 0, 5e = 0,  2) Ae = 90 ~ , 3) 5e = 30 ~ , d a s h e d  l i n e s  - r e s u l t s  c a l c u l a t e d  
f rom t h e  t h e o r y  w i t h  a = 3,  b ( $ )  = c o n s t  = 1400 ] .  The s i m i l a r i t y  p h a s e  o f  t h e  d e v i a t o r s  
d g i j i  and  o i j '  i s  f i x e d  and d e c r e a s e s  s l o w l y  w i t h  t i m e .  

F i g u r e  5 shows d a t a  f rom t h e  c a l c u l a t i o n  o f  t h e  work done  i n  t h e  c r e e p  p r o c e s s  d u r i n g  
t h e  s t e a d y  l o a d i n g  o f  m a t e r i a l  AK4-1T. I n  Eq. ( 2 . 1 ) ,  kz = 0 .0505  and k 2 = 0 .1364  f o r  t h i s  
a l l o y .  C a l c u l a t i o n s  p e r f o r m e d  by t h e  s i m p l e s t  v a r i a n t  o f  t h e  t h e o r y  p r o d u c e  a " s p l i t "  o f  
t h e  g r a p h s  A ( t )  w i t h  o i = c o n s t  f o r  d i f f e r e n t  8 ( c u r v e s  1 -3  f o r  8 = 90,  50 ~ , and 0 ) .  They 
a l s o  y i e l d  a c o n s t a n t  s i m i l a r i t y  p h a s e  f o r  t h e  d e v i a t o r s  o f  c r e e p  s t r a i n  r a t e  and  s t r e s s  
d u r i n g  s t e a d y  l o a d i n g .  T h i s  f i n d i n g  i s  c o n s i s t e n t  w i t h  t h e  t e s t  r e s u l t s .  

Thus ,  t h e  t h e o r y  f o r m u l a t e d  h e r e  makes  i t  p o s s i b l e  t o  d e s c r i b e  a number o f  i n t e r e s t i n g  
e f f e c t s  r e l a t i n g  t o  t h e  c r e e p  o f  m a t e r i a l s  wh ich  a r e  n o t  s e n s i t i v e  t o  t h e  t y p e  o f  s t r e s s  
s t a t e  and  r e a c t  t o  t h e  mode o f  l o a d i n g  - w h e t h e r  t h e  l o a d i n g  i s  s t e a d y  o r  c o m p l e x .  
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